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III. EXPERIMENTAL

The absorption spectra were measured with
Cary 14 and 14 RI spectrophotometers. For the
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low-temperature spectra the crystals were im-
mersed in liquid nitrogen in an optical silica cryo-
stat.
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Detailed line-shape measurements of fluorine resonance in SrF, have been made and the re-
sults compared with theories of dipolar broadening and with Barnaal and Lowe’s data from
CaF,. It was recognized that the theoretical results of Evans and Powles (EP) and of Lee, Tse,
Goldburg, and Lowe (LTGL) were derived from the same basic expansion for the free-induc-
tion-decay function. This made it appropriate to combine their results in order to obtain an
improvement in the theory. The combined result was compared with experimental data of
LTGL from NaCl and with Hutchins and Day’s results from CsF. In most cases, the combined
result gave as good or better agreement than either the approximation of EP or that of LTGL.

I. INTRODUCTION

We have studied NMR line shapes observed in
several single crystals of alkali halides and
other ionic compounds. These crystals provide
excellent tests of theories of dipolar broadening
which have recently been developed. Our work
has included a detailed analysis of line shapes in
strontium fluoride which led us to consider, in
detail, the theoretical development and its gener-
alizations described in this paper. Before de-
scribing our results we will review the develop-
ment of the theory.

In 1948, Bloembergen, Purcell, and Pound!
proposed the Gaussian model for a system of

spin-3 particles on a rigid lattice. A given spin
experiences local magnetic fields due to neigh-
boring spins. It was found by an approximate cal-
culation that the distribution of this local field at
a representative spin is essentially Gaussian in
shape. Later that year, Van Vleck? published
exact calculations of the second and fourth mo-
ments of such a spin system. Comparison of mo-
ments for a Gaussian shape with these exact re-
sults showed that the Gaussian was only a rough
approximation.

The continuous-wave (cw) experimental analysis
of calcium fluoride by Pake and Purcell,  in 1948,
indicated that Van Vleck’s results were correct.
Bruce, * in 1957, using the same calcium fluoride
crystal of Pake and Purcell, ® repeated the cw ex-
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periment employing improved experimental tech-
niques, and the new results were in excellent
agreement with Van Vleck’s theory.

The same calcium fluoride crystal was again
used by Lowe and Norberg® (LN) for a free-induc-
tion-decay (FID) experiment. The beat structure
exhibited by these Bloch decays clearly demon-
strated the non-Gaussian character of the corre~
sponding cw line shapes since, in the same paper,
they proved that a cw line shape is the Fourier
transform of the corresponding FID. They also
developed an expansion of the theoretical FID
which applied to a system with a single set of
particles having spin 3 such as may be found in
calcium fluoride. Their FID data were in good
agreement with Fourier transforms of Bruce’s*
data and both were in reasonably good agreement
with their theory.

Further theoretical developments were made in
1967 by Lee, Tse, Goldburg, and Lowe® (LTGL)
and by Evans and Powles’ (EP). Both groups were
motivated by the following criticisms of the LN
procedure: that the convergence properties of
their expansion are not known, that uniqueness is
questioned, ® and that the series diverges for times
not much greater than those calculated by LN.
Clough and McDonald® had developed a generaliza-

tion of this method but it was subject to the same
criticisms. We have noted that both groups inde-

pendently developed the same basic expansion for
the FID having the form

F(t)=Fo(t) + Fy(#) + Fo(t) ++ -+ .

Each term in this series does not diverge for long
times. EP7 evaluated the first two terms exactly.
LTGL, ® however, utilized this expansion different-
ly. They were able to show that the original LN
expansion® could be uniquely obtained from this
new expansion by substituting for a certain oper-
ator in F, and higher terms its power series in
time. This substitution gave F;, F,, etc., each
as an infinite series of terms; truncation of these
series gave approximate expressions for these
terms. They then evaluated, in this approxima-
tion,

F(t)=Fot) + F(t) + Fy(t)

for a system having two sets of particles each with
arbitrary spin. Here F, and F, are the LTGL ap-
proximations to F; and F,, respectively. They may
be written as F, =F,V, and F,=F,V, so that their ap-
proximation may be written in the form F(¢)=Fy(¢)
X V(t), where V=1+V;+V, Gade and Lowe!® had
previously generalized the LN expansion to a sin-
gle set of particles with arbitrary spin.

Now, since both F, and F, can be evaluated ex-
actly, ""11'12 we suggest that an appropriate theo-

retical expression would be the combined result
given by

F(@)=Fot) + F,(t) + Fo(t) .

We have determined f‘gto the same degree of gen-
erality as Demco’s!! evaluation of F, and F,.

That is, a system with any number of sets of par-
ticles each with arbitrary spin. Gibbs!2 has inde-
pendently evaluated F,+F, with somewhat less
generality. In Sec. II, we outline the derivation

of these results and describe how they may be ap-
plied to a system having less than 100% abundant
spin species such as is found in strontium fluoride.

Other related theories applicable to a system of
spin-3 particles have been developed. Tjon'® ob-
tained an approximate integral equation for the
FID which was solved numerically using the Gaus-
sian assumption. Borckmans and Walgraef!* also
obtained an integral equation which had to be
solved numerically for the FID. Mansfield"® used
a Green’s-function formalism to obtain an expres-
sion for the cw line shape involving an adjustable
parameter.

Until fairly recently, detailed experimental
study of dipolar line shapes was limited to the sin-
gle calcium fluoride crystal used by Pake and
Purcell, * Bruce, * and LN.® Then in 1966, Bar-
naal and Lowe!® repeated these measurements on
a different single crystal of calcium fluoride which
they believed was more accurately oriented. In
addition, it was discovered that detailed line-
shape measurements obtained from FID data
should be corrected to account for the finite band-
widths of the receiver and pickup coil'” as well as
the finite width of the excitation pulse.® Their
sample was fairly free from paramagnetic impur-
ities having a T, of 30 sec at room temperature.
In 1967, LTGL® studied the sodium resonance in
sodium chloride. They found quadrupole effects
to be negligible in their samples. Then, recently,
Hutchins and Day!® reported FID shapes obtained
from cesium fluoride. All these experimental
data as well as our results from strontium fluo-
ride will be discussed in Sec. III where we com-
pare them with our theoretical calculations. In
Sec. IV, our observations will be summarized
and discussed.

II. THEORY

For a system consisting of any number of sets
of particles on a rigid lattice each having arbi-
trary spin the Hamiltonian may be written as

H=H,+Hp ,

where H, is the Zeeman term describing their in-
teraction with an external field H), and Hj is the
truncated dipolar term.??® Let the set of particles
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whose resonance is observed have spin I and A new operator I, (¢) is defined by
gyromagnetic ratio y, remaining sets having spins 1. (F)=e* BT (1) e~ 8t (5)
S, and gyromagnetic ratios y, where p labels dif- z\)=e x\b)e ’
ferent sets. We may then write, for ﬁo =H,2, and is found to satisfy the equation
I,
Hz == iyHoI" - 2 ivuHo S, =20 =[1,0), a()], (6)
H =
and Hp=fi(a+p), where  a(t)=e™ #* ae'.
where The integral equation corresponding to (6) is
a=y, A,yi,-1 ;
=2 Ayl 1+§ W2 Astasn Surtm sum()l,) IL()=1, —i [ [ ("), alt)]at".
and Solving this equation by successive iteration pro-
duces the expression®’
B=22 Bylili + 2 [ 20 By , o ‘| tn-1
it uE;%#(u) IL()=I, +HZ_1 (-2) fodtlfo dty+ - [i""tdt,
X SpitmSugm + 2C ;50m Siym I3 i
iog X["'[Ix: Ol(f,,)],---, a(tl)]' (M)
2
+ 2 2L 2Dy 30) Sty Sﬁl(")] : @ Notice that this is an expansion in powers of a.

v(#r) i(r) j(v)
Spin operators for particles with spin I and spin
S,are I, and §W(u, , respectively; operators for,

say, the z component of total spin of a set are
then

=217 and Si=2J S
i iw)

Restricted double sums will be written as };.;
while corresponding single sums will appear as
Suep - Coefficients in (1) and (2) have the follow-
ing definitions:

Ay =-%B,,
B;; =3v*1n(1-3cos?6,,)r;}

ij

Ay ituy= 5 Biw sm s

3.2% 2 -3
Biuiw = 1Val (1= 3¢08% 60y o) 7 im s s (3)
1 2 3
Cijew =2 YYult (1= 3€08%0 1) )7 5wy »
_1 2 -3
Di )i =2V ¥ (1 = 320820, ),0)) 7300500 -

In each of the preceding coefficients, 6,,is the an-
gle between T,, and H, where 7,, is the distance
between lattice points p and g. Although some
simplification of equations is possible using (3),
it is advantageous to defer this so that terms in
our final results may be traced to their occur-
rence in (1) or (2).

The normalized FID amplitude is given by

F@#)=Tr{r1, O} /Tr{3} , @
where
I, (¢) = exp GHpt/R) I, exp(~ iHyt/Tr)
=exp[ia + p)t] I, exp[- i(a +B)] .

Following LTGL, ¢ it is observed that I, (t) satis-
fies

i57 I.@0)=[1,@), a+p] .

Since « and I, commute, o will affect F(¢) only
through the presence of 8.7 Using (4), (5), and (7),
we obtain the corresponding expansion for F(¢)

F()=Foft) + Fy(t) + Folt) +- -

These first three terms are written in terms of
I)'(t) =exp(- iBt)I, exp(iBt) as follows:

Fot)=Tr{1,' (1)1} /Tr{1%}, (8)
Fy(@#)=(=1) [jat, Tl ,f,tz[{ll’:aj a(tl)]}, (9)

Folt)= (=i [la, [* at,

o IO, ()], ()]}
Tr{IZ} ’

(10)

LTGL® evaluated (8) exactly and (9) and (10) ap-
proximately by expanding a(#,) by its definition as
a power series in , keeping terms through #* in
the resulting series for F, and F;. This result
can be written as

FLTGL=F0+F1+ﬁg, (11)

where the tildes indicate the LTGL approximation
to F, and F,. EP,” Demco, !! and Gibbs? found
that F, could also be evaluated exactly and to this
approximation

Fgppe =Fo+F;. (12)

One of us (R. F.) has suggested that the results of
(11) and (12) be combined to give

FF=F0+F1+F2, (13)

which should be a better approximation than either
(11) or (12) alone. That is, rather than evaluate
F, exactly, we may approximate it by using the
expansion for a(¢,). When this expansion is sub-
stituted in (10) we obtain an infinite series of
terms
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Fy= i /n))f, (t). with arbitrary spin. The calculations are
n=3 straightforward but tedious and they are omitted
However, this is just the technique used by LTGL here. The appem.:lixes of Gade and Lowe'’ are
who included terms in this series through ¢%. We helpful in evaluating the terms below. We find
may therefore obtain from their work an approxi- Fo+F +F,=Fot) V),
mate expression for F, which applies to a system .
having two sets of particles each with arbitrary Folt) = (sm (21+1) )
spin. wem \(2I+ 1)51n[Bu ]
In order to have a general expression for Fp oI sin[(2S +1) Gy, ]
the calculation of LTGL® has been extended to a X o <(ZS +1) S Coe ] > (14)

system of any number of sets of particles each

and v(#)=1+(/21)[~ 4E’A,,,(B,, B, X(2B,, ) X(2B,t) -2 20" A (Cirm = Carewy) X(2Byt)

[T B (D))
XX, (ZCmmt)+2 Z AnBa Y(213,,,t)]+ { £(21-1)(21+3) Z) A,,Jsa,,e X(2B,,1)
+221-1)@21+ 3) jg_‘;)A,kB,k X(2B,,t) - 1(1+ 1)12#’14,,;3,,, (132l _B,,)X(zB,k H+¥8(1)(1+1)
E'[2A3k (Byy=B ) +A Ay (B —B,) +A 4 A, (B -B, )| X(2B,, 1) - 18 Zu)[s,, (s, +1)]
Z; A.ik QI(H) (Ckl(u) - C!l(u))X(ZBIk t)+ I (I+ 1) Z) 2' A?k (Ckl(u-) - le(u.))

j,l( (VR P 1073
XX (ZCkz(uat)+1§‘ES Su+1) 2 A Gy = Guaw) X (2C ¢ 1)}

Fw)#1(u)

+(/4{-%1(1+1)(21+3)(21-1) 25 A%, B3, -RI1%(1+1F ' [24%, B, (B, - B,)
) #1
+A ;A By —By) By -Byp)] -3 1(1+1) 238, (S, +1) jzl(;l)Aik Gty (Cracwy =Crrwy)
" NI

~R Y SESu+1P T Aaiw Criw Crgnr = Cran) T (15)
" Fr)E(u)

where the X and Y functions are
X(2By,t) =3 cot(B,,t) - 5(21 +1) cot[ (21 +1) B, 1] ,
X, (2C 4y (uyt) = 5 Ot (Cpyqy 1) = 3 (2S,+ 1) cot [(2S, +1) Cpy 1, (16)
and  Y(2B,,t)=~2I(I+1)+3cot(B,,t)[X(2B,1)].

In (14) and (15) the index % refers to a reference spin, and a primed sum in (15) means that neither j or
! may equal &.

The function Fy +F, has been evaluated by EP,” Demco, ! and Gibbs. 2 The results of EP apply to a sin-
gle set of spin-3 particles. This calculation was extended by Demco!! to include any number of sets of
particles each with arbitrary spin. The expressions given below differ from his, both because there is an
error in his published results and also because our result has been written in a somewhat different form.
F, was given in (14). For F, we find

sin[(2I+1)Bkt]> sin[(2S, +1)Ci(, t]> 18
Fy=-2 Z‘ A”*tX(ZBfkt) ,g,<(21+1)sin(13;t) I <(ZSL,+1)sin[C:t,(ui VAR I{1+1)

. ¢ X(2B,t,) sin[(21+1)B, 1]\ ( X[2B;, (t,— )] sin[(21+1) B, (¢, - t)]
ng»z)A’ksm(B"”t)f,, dt1[<sin(Bj:t:) (21+1)sin(B;:i:)> (sin[Bj:(ti—t)] (2[+1)sin[Bj:(ti—t)]>

% (sin{(21+ 1)[B;, (t,—¢) -Bmtﬂ})H o (sin{(zsu +1)[Cyy = 1) = ckl(u)t11}>]
wesm M2T+1)sin[By; (b =) =By 1] /0y yy \ (28, +1)8in[C 53y (b1 — £) = Cpy(y ] ’

7

where X(2B,,¢) is defined in (16). It is characteristic of the expansion (7) that Fy and F, do not diverge for
long times.
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In addition to the approximations Fy,q;, and Fgppg, We have suggested the combined result Fo+Fy + ﬁ‘z.

Results for F, and F, were given in (14) and (17).

The evaluation of F, was included in (15) and may be

selected from it by choosing terms second order in the A,, coefficients; the EP-LTGL expansion is an ex-
pansion in powers of a and F, involves «a to second order. The result is

F-z =F0 (t) Vz(t) ’

where  V,()=(/3!) {¥ (21-1)(21+3) 2. A%, B, X(2B,,?)
i(#R)

+¥71(1+1) ;' (24%, (B, - B;)) +A y Ay By =B ) +A Ay (B, - By,))] X(2B,,t)

+¥1(1+1)2 2 A% (Critw = Ciuiw)

vyl ()

XX, (2C, 10 1)+ 20 [S.(S, +1)]
('3

Z (Aj(u)k(u)) (ckj(u-) - Ckk(u))X(zckI(u) t)}
Hw)#e(n)

+(/aN{-81(1+1)(21-1)(21+3) 2 A%, B% - 1%(1+1PY'[24%,B,, (B,,-B,;)
i(#R)

1

+A Ay (B - Bil) (By - Bkj)] %‘I (1+1) Z; 5,(S, +1) 2! Ajk Crrw(Criu) — Ciim)

iy i

_gza%zslzl(s”l)z 2 Ay Cryw Criun = Cuawwy )} (18)

Fw)E(p)

One application of these generalized results
might be to sodium resonance in NaCl. Na® is
100% abundant, whereas C1*® and CI*" are 75
and 25% abundant, respectively. Both chlorine
isotopes have spin £ but different gyromagnetic
ratios. The two sets of chlorine spins share the
same sublattice and have a large number of equal-
ly probable configurations on this lattice. As a
result, any of the expressions given for F(¢) must
be averaged over all possible configurations of
these isotopes. Actually a simpler method® is
justified for this problem. The magnetic moments
of CI*® and CI*" are approximately equal so that the
chlor'me spins may be considered to be a single
spin-$ system with a magnetic moment which is
the average of the two. There are, however,
other cases where this method cannot be justified.
An example of this type of system is strontium
fluoride (SrF,). F is 100% abundant, whereas
Sr® is 7% abundant. The remaining isotope of
strontium has spin zero so we have a system with
two sets of spins where spins in one set have
many possible arrangements on their sublattice.
We have calculated the fluorine line shape in
SrF, using the method described below.

Consider a system consisting of a 100% abundant
observed spin species I on one sublattice, and on
a second sublattice, several isotopes, say m,
each having different spins S,. These isotopes
will be assumed to be randomly distributed on the
second sublattice in accordance with their relative
abundances P;, Py, ..., P,. The method we use to

evaluate the configuration average of F(t) will be
illustrated for the F; term. Since the resonant
spins occupy nonidentical sites in a sample we
must first write

=1%Z o (sm (2I+1)B,kt|>

(21 + 1) sin(B,t)
R=1 1(#R)
% sinf(25,+ 1)Cut]
in|{(2S,+1)C t
XH H < sin u - RI(p) > 19
p=1 1(p)=1 (ZSu."'l)Sln(Ckl(u)t) ’ (19)

where N is the number of resonant spins. Letting
N, represent the total number of isotopes sharing
a sublattice we have

No=2J N, ,
w=1

where N, is the number of particles with spin

S,. Notice that N, is also the total number of
sublattice sites available to spins S, (some species
may have S, = 0). The relative abundance of the

L th spin species may now be written as

P,=N,/N, .

The double pi product in (19), IT II,,,, covers
each point on the sublattice and properly identifies
the isotope on each of these lattice points for
some prescribed configuration. The resonant
spin set entirely spans its sublattice with identical
atoms; hence, the pi product II; in (19) is inde-
pendent of 2 so that



1
~ lZN: m N“ sin[A ,Z% )]
Fo Ay sin(Z () >
= p=1 l(u-) 1

where A,=2S,+1, Z}}(,,=Cprywt, and

= TI {sin[(27+1)B,#]/(2I+1)sin(Byt)} .
1(#R)

Now consider, instead of a single sample, a very
large number N of samples identical except for
the arrangements of the S, spins. Each config-
uration is assumed equally probable so that the
average of F, over this ensemble is given by

N N
1 1 m Ny
Fo=T 5 2y 2 I 1
€=1 k=1 p=11(p,e€)

. Zu )
X (M) . 20
Au51n(Z:t(u, o) (20)

The pi products in Fy and F; can always be ex-
panded in a power series. Thus, for example,

L

sin(4X,) = ad
<_—TX—_Asin kk))=1+012 X,,+CZZ X Xy +e0e,

k=1 k¥l

k=1

where the coefficients C; are constants. Using
this result in (20) requires the calculation
N m N
1 [ ¥ sinf[A,Z G, o] ]
Q= a Z II H AMSin(Zgl(u, e))

€=1 p=11(n,
b4
1 n . [
- = w N u
=R Z II [1+C1 Z Zriu, 0 +C2
€=1 p=1 W(e,e)=1
Nu

u u
Zivw, oZpju, e)+---]
p, € #iln, s)

N
%{E [1+EC” Z Zkl(u,e)
€=1

e, e

Ny, N,
wv
+ E cicy E E Zkl(u, e)Zkl(v, e
Hp,e) 1w, e
n#v
N
3 u u
+ 202 X: Zkz(u,e)ij(u,e)+"'] .
w= p,e) #j(p,e)

(21)

To proceed with the evaluation of @ we note that
P, is the probability that a lattice site of the non-
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resonant spins will have an S,-type spin on it.
That is, P, is the number of configurations in the
ensemble for which an S, spin occupies the jth
sublattice position divided by 9t, the total number
of configurations. On evaluating (21) we find
terms such as

N
@1, @=1X[ Dot 5 Ztiine)

w=1 1u, 6
m 1 u
Bl s ¥ g
p=1 N e ll(u,
m
otz T % zt.0 ]

p=1 e=1 1'=1

where 67 =1 if the sublattice site I’ is occupied
by an S, spin for the €th configuration and is
Zero otherwise Hence,

Q= f) Z) zk,.[l ge;‘ﬁ]

wo1 Lt Nea
- M
= E Z) CtzhP,

Similarly,
RN N N
1 m
3= 2 Z Cfcl{ Zs ZS Zkul(u.,e)Z;!(v,s)]

Noe-1uzv 1B, e 1w, e

N
!

RN

YCYZY Zoy [5-)% Z}I oLcey s:,
€=

m Mo

27 2 CCiZ{vZipP,P, ,

v tE g

where it is evident that j’#7’ for if j'=1’ then
either O} ¢ or ©%:° equals zero for each €. Asa
further example consider Q,:

Ny
L ¢ (o
Z[Z (o} z Ziu, eyl i, ©
n=1 U, e)#i(n,e)

oA
5> Z cLzb, [5112 "e""}
€=1

uEL g

m No B
=2 2 cizt.zilP,P,] ,
w=1 1#5°

where P,=(N,-1)/(Ng-1)=P,
since Ny>>> 1. Thus

Q= 5 Z) Cizzl, P .

p=11'#

Other terms are calculated in a similar manner.
We obtain, finally,

- sin[(27+ 1)B,,¢] .
F (,g,m>(Q1+Qa+Qa+Q4+ ).

The evaluation is now simplified since we sum
over every point on the sublattice. We can con-
sider each point on this sublattice to be shared by
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each isotope since the probabilities P, ensure that
proper weights are assigned. As a result F is
independent of 2, a reference spin site. Similar
results have been obtained for F;,. When applied
to the fluorine resonance in SrF, we have, for
example,

snl(ar: DB [, Bepp

Fo= m,((zn Dsin(B,2)/ L "2

No # No .
X2, (Cp)2+ =\ C,P VZI (Cprr)

et 4!
No

+3(Cy)%P% 2. Ci.Ciy )+] , (22)
1450

where P=0.07 and the coefficients are
C,=3[1-(25+1)?]=-33
and  C,=5[(25+ 1)~ (25+ 1%+ ] =242

In this instance terms through ¢ are sufficient be-
cause both P and (yg,/yy) are small. Notice that
coefficients C;=0 when S=0 as required.

We could apply the averaging method just de-
scribed to any system having several isotopes for
one or more of its atoms. The number of terms
required in expansions such as (22) will depend on
the particular crystal to which the method is ap-
plied and so general results will not be given here.

III. COMPARISON OF EXPERIMENT AND THEORY

Experimental measurements were made at room
temperature on a Varian DA-60 spectrometer
operating at 56 MHz for F!°, Our sample was a
cylindrically shaped Harshaw crystal 3 in. in diam
and 1 in, in length having [110] direction approx-
imately along the axis of the cylinder. Alignment
to within 1° was subsequently carried out using
x-ray diffraction. Each crystal was then mounted
on a shaft which allowed rotation of [110] axis
perpendicular to ﬁo. For each of the three prin-
cipal orientations of a cubic crystal with respect
to ﬁo several independent sets of runs or data sets
were made, Line shapes within each set of data
were averaged to a single symmetrized curve
from which an FID curve was calculated by Fou-
rier transformation. Second moments were also
obtained.

Magnetic field modulation was made at 80 cps
with an amplitude of about 0.4 G. For this mod-
ulation amplitude, corrections to measured sec-

ond moments were less than or about equal to 1%.
Using Andrew’s? formula for the line shape ob-
served using field modulation, we may easily ob-
tain by Fourier transformation a relation between
the FID calculated from the observed cw line shape
F’(¢) and the true FID shape F(¢):

F(t)=F'())/(1 - Dyf? + Dyt* = +++) .

Coefficients of terms through #* are related to the
modulation amplitude H,, as follows

1 2
DZ:Eysz ’ D4:ﬁ§74H‘11n .

For those times of interest and for values of H,,
that we used, the dominant correction factor is
D,t%; in addition, D,t*< 1, so that our calculated
FID shapes need not be corrected for modulation
distortion. Notice that the zeros of the decay F(¢)
are predicted to be independent of H,,. Except for
this, the correction for field modulation is such
that |F|>|F’| for typical values of H,, and ¢{. This
is usually in the direction opposite to that correc-
tion which must be made for distortion due to fi-
nite bandwidths in an FID experiment measuring
F’'(¢); thatis |FI<|F’"| for'a major portion of
the decay. %17

Our sample of SrF, was fairly free from para-
magnetic impurities having a T, of 600 sec. For
this sample, the magnetic field was swept at a
rate of 0. 01 G/sec. Square roots of second mo-
ments are given in Table I, The next to last col-
umn gives theoretical values obtained from Van
Vleck’s theory when only fluorine nuclei are con-
sidered while the last column shows the effect of
the 7% abundant Sr®” nuclei. Their effect is quite
small being most pronounced for the [111] orienta-
tion. Figure 1 shows Fourier transforms of our
cw data compared with the theoretical results Fyppg
and Fprqr. The time axis is labeled by values of
a dimensionless time 7, where the actual time is
t=(36.5 psec)r. Configuration averaging was
carried out on Fyppi as described in Sec. II. Since
Sr®" nuclei produced noticeable effects in these
calculations only for the [111] orientation, we cal-
culated Fy ¢, by considering only a single set of
spin-3 particles. For this case the formula of
LTGL reduces to that obtained by LN, Compar-
ison of the two theoretical results with the data
shows that although for some orientations one is
in better agreement than the other neither one is

TABLE 1. Square roots of experimental second moments expressed in G compared with Van Vleck theory.

Orientation

Data set 1 Data set 2 Data set 3 Theory (F only) Theory
[100] 2.97+0.04 3.01+£0,06 2.98+0.03 3.00 3.00
[110] 1.85+0.02 1.84+0.02 1.86+0.02 1.85 1.86
[111] 1.27+0.01 1.26+0.01 1.25+0.02 1.25 1.27
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in better agreement for all orientations. Notice
that the LTGL result begins to diverge near 7=2
for the [100] orientation. This consequence of the
time expansion used by LTGL was not observed in
any of our other calculations for those values of
7 that were used.

These calculations have shown that the Sr®’

nuclei produce quite small effects.

Theoretical and experimental FID’s of the fluorine spin system in SrF, where a unit of ¢ corresponds to 36.5

If these nuclei

produced negligible effects fluorine FID’s from
CaF; and SrF, should be identical when properly

scaled. That is, in the theoretical

FID formula

(4), we may write = (a®/+?%)T where 7 is a dimen-
sionless time, y isthefluorine gyromagnetic ratio,

a is the nearest-neighbor distance,

and 277 is
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FIG. 2. FID’s of CaF, and SrF, experimentally com-

pared on a dimensionless time scale.

Planck’s constant, Since SrF, and CaF, have the
same crystal structure, the FID formulas, when
expressed in terms of 7, predict identical decays
when Sr®” terms are omitted. We have plotted,
in this manner, the most accurate FID measure-
ments on CaF,, made by Barnaal and Lowe, !¢ to-
gether with the Fourier transforms of our cw line
shapes from SrF,. These results are shown in
Fig. 2. The scale factor (a®/+%7) is 30. 3 usec
for CaF, and 36.5 usec for SrF,. Consider first
the [100] orientation. The two sets of data are
in excellent agreement. For this orientation the
theories of Van Vleck and EPDG predict negli-

PARKER, AND MEMORY 1

gible effects due to Sr®” nuclei. The data for the
[110] orientation are slightly less well matched
and for the [111] orientation there is a more pro-
nounced deviation of the two line shapes which is
outside the consistency limits of our data sets.
These observations are consistent with the effect
that Sr® nuclei would have on the observed flu-
orine resonance, The local fields of strontium
nuclei would broaden the cw line shape and hence
narrow the FID, The agreement of these two
sets of data suggests that a detailed comparison
of experimental and theoretical line shapes is
justified.

We have made such comparisons using data
reported by LTGL on NaCl® and Hutchins and Day!®
on CsF. Theoretical calculations were made to
determine the three approximations to the FID
discussed in Sec. II: Fy g, and Fgppg, and Fi.
In our evaluation of both F, and Fy rq. we do not
use the last approximation of LTGL in neglecting
sums in (15) and (18) involving odd powers of coef-
ficients like A,;. Although in many cases these
terms are negligibly small there are some cases
in which they are not and hence our results may
differ slightly from those reported by LTGL and
Hutchins and Day.!® All FID shapes are plotted
as a function of the dimensionless time 7, where
the real time ¢ is given by

t=(a®/¥Pn)r .

For a fcc lattice it is convenient to let the distance
factor a be half the nearest-neighbor distance; y
is the gyromagnetic ratio of a nucleus chosen to
be F¥ in CsF and Na® in NaCl. Plotting in this
fashion makes FID shapes dependent upon the lat-
tice type, in these cases fcc-fce, and upon the
spins and the ratio (y’/y) where ' and y are the
gyromagnetic ratios of the two nuclear species.

In each calculation 134 resonant spins nearest the
reference spin were included except in the evalua-
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tion of the integral in (17) for which 54 spins are +F, was in as good or better agreement with ex-
included. For several crystal orientations and periment than Fgppg alone. To illustrate the im-
times 7 we increased these numbers to 200 and provement obtained we show in Fig. 3 a compari-
86 spins, respectively, without finding a signifi- son with the [111] fluorine resonance in CsF. Sub-
cant change. The number of unobserved spins sequent comparisons will omit Fgppg both because
included was 116 which was increased to 128 when it is consistently improved upon by F, and because
200 resonant spins were considered. The average in earlier work, Firq; has been used exclusively
computation time per 7 point was about 20 sec on to compare with data from two spin species cry~
an IBM 360/75. stals.

In all our comparisons we found that Fz=Fgppg LTGL?® studied the soduim resonance in NaCl.
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In order to reduce quadrupole effects as much as
possible they used a sample specially grown to be
exceedingly strain free. However, they found

that standard commerically available samples pro-
duced equivalent results. Their data did show
significant effects, however, when these samples
were subjected to strong thermal shocks. In Fig.
4, we compare their best data with Fy 1 and Fg.
The time scale factor here is 425 usec. In cal-
culating the line shape, chlorine spins were
assumed to form a single spin system as dis-
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cussed in Sec. II. Examination of results for
each orientation shows that Fj is in better agree-
ment with the data than Fypg. The [110]orienta-
tion shows the greatest improvement. However,
differences between theory and experiment occur
in the same way for each orientation.

Even though quadrupole effects are evidently
not significant for these sodium chloride data it
would be of interest to make similar comparisons
for a crystal in which they are absent. We have
thus calculated line shapes for the fluorine res-
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onance in cesium fluoride which was recently re-
ported by Hutchins and Day.!® Results are given
in Fig. 5. Consider first the [110] and [111] ori-
entations. Theory and experiment compare in a
manner quite similar to that found for the corre-
sponding orientations of NaCl. For the [100] ori-
entation in CsF both theoretical curves are in
substantial agreement with each other but not with the
experimental data. This was surprising to us in
view of the consistency of all our other compari-
sons.

IV. SUMMARY AND DISCUSSION

The excellent agreement of our cw data from
SrF, with the FID data from CaF, has led us to
make detailed comparisons between different line-
shape theories and experiments on other crystals.
It was recognized that the theoretical results of
EP and LTGL were derived from the same basic
expansion for the FID function. This made it ap-
propriate to combine their results in the manner
described earlier in order to obtain an improve-
ment in the theory. This combined result was
compared with data from crystals having two sets
of spins and was found to give as good or better
agreement than either the result of EPDG or that
of LTGL alone,

Crystals having two or more sets of spins are
of interest because of additional dipole-dipole
couplings that influence the line shape: The unob-
served spins produce local fields at the observed
spin sites which broadens the cw line shape while
the spin-flip~flop interaction between unobserved
spins effectively averages this local field which
tends to narrow the line.® Abragam and Winter?!
found that the K*® line shape in KF was qualitatively
Lorentzian rather than Gaussian because of the
large effect of F'°-F!? interactions. The magni-
tude of this effect is determined essentially by the
ratio y'/y where y’ and y are gyromagnetic ratios
of the unobserved and observed spins, respectively.?
KF represents an extreme case in which this ratio
is quite large: y(F1)/¥(X*) is about 20. Thus in
NaCl y(C1%®%) /y(Na®) is about the same as y(C1*")/
v(Na®) which is approximately 0. 30. In CsF we
have y(Cs!®) /y(F'®) approximately equal to 0. 14.
Thus comparisons between experiment and dipolar
theory that have been made have been limited to
cases in which interactions between nonresonant
spins were not large. Experiments on crystals
in which these interactions are large would provide
a further test of theories of dipolar broadening.
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